
E-Learning System Development Using J2EE Framework Design Pattern

Zin Sandar Win, Sabai Phyu
University of Computer Studies, Yangon

zinsandarwin@gmail.com

Abstract

In the context of software engineering, the design
patterns are reusable solutions to common problems
and are one of the key mechanisms for implementing
reliable and maintainable software. Design patterns
are fundamental to design reuse in object-oriented
development. E-learning offers a very flexible time
and location independent way of learning for the
participants. Therefore e-learning has advantages
over traditional education and training such as
reduced costs, improved consistency and timing, and
so on. E-learning also includes Internet-based
learning, web-based learning and online learning.
Well-designed e-learning is effective giving learners
an opportunity to practice their knowledge and skills.
This paper describes development of e-learning
system with J2EE design patterns using Struts,
Spring, Hibernate framework and also utilizes
MySQL database for data storage. This system aims
for three types of users such as learners who are
interested to learn and take examination about
Information Technology (IT), coordinators to
participate in teaching and administrator to manage
the system.

Keywords: J2EE design patterns, Struts, Spring,
Hibernate

1. Introduction

J2EE (Java 2 Platform, Enterprise Edition) is a
component-based and platform-independent
architecture for building enterprise applications. This
architecture offers a multi-tiered distributed
application model. Each tier is usually implemented
by a different group of developers and communicates
with the other tiers via a standardized interface. The
advantages of n-tiered architecture are promoting
software reusability, easier system maintenance and
more effective use of data and networks. Most web-
based enterprise applications are split into three
logical tiers. The three logical tiers in n-tier
architecture are: presentation tier, business tier
(middle tier), and data tier (integration tier).

Figure 1. J2EE Pattern Catalog Address 3 Tiers

The J2EE pattern catalog currently includes 21

patterns [1].

Table 1. Patterns in the J2EE Pattern Catalog

Tier Pattern Name
Presentation

Tier
Intercepting Filter

Front Controller
Context Object

Application Controller

View Helper
Composite View
Service to Worker
Dispatcher View

Business
Tier

Business Delegate

Service Locator
Session Façade
Application Service
Business Object
Composite Entity
Transfer Object
Transfer Object Assembler
Value List Handler

Integration
Tier

Data Access Object
Service Activator
Domain Store

Web Service Broker

1.1. Presentation Tier

The presentation tier, which aims at presenting the
business information to the user is implemented using

Servlets, JSPs and HTML/WML pages. Design
patterns in presentation tier are:
Intercepting Filter: Facilitates pre-processing and
post-processing of a request.
Front Controller: Provides a centralized controller
for request handling.
Context Object: Encapsulates state in a protocol-
independent way to be shared throughout your
application.
Application Controller: Centralizes and modularizes
action and view management.
View Helper: Separates processing logic from view.
Composite View: Creates a composite view from sub-
views by separating content and layout management.
Service to Worker: Invokes business processing prior
to view processing.
Dispatcher View: Invokes view processing prior to
business.

1.2. Business Tier

The business tier (the middle tier), where core

business mechanisms are implemented, is usually
encapsulated in EJBs (Enterprise Java Beans).
Design patterns in business tier are:
Business Delegate: Encapsulates access to a business
service.
Service Locator: Centralizes lookup login for
business services and components.
Session Façade: Exposes coarse-grained services to
remote clients.
Application Service: Aggregates behaviour to provide
a uniform service layer.
Business Object: Encapsulates business data and
logic.
Composite Entity: Implements persistent business
objects using entity beans.
Transfer Object: Carries data across a tier.
Transfer Object Assembler: Assembles a transfer
object from multiple data sources.
Value List Handler: Manages search and iteration of
a large set of results.

1.3. Integration Tier

The integration tier (the data tier), which
represents different kinds of legacy systems, database
servers, etc is usually accessed through the JDBC
API and other standard interfaces provided by the
J2EE Connector Architecture. Design patterns in
integration tier are:
Data Access Object: Abstracts and encapsulates
access to persistent store.
Service Activator: Provides asynchronous access to
one or more services.
Domain Store: Provides transparent persistence for
business objects.
Web Service Broker: Exposes one or more services
using XML and web protocols.

1.4. J2EE Application Framework

J2EE Application Frameworks are the supporting
technologies that maintain J2EE specification and
work with J2EE. These are Struts, Tiles, Spring,
Hibernate etc [4]. In this paper, Struts, Spring and
Hibernate are used.
Struts: This is an open-source framework that in
combination with standard Java technologies like
Java Servlets, Java Beans, XML helps in effective
development of web application. It is widely used in
the development of application architecture based on
the classic Model-View-Controller (MVC) design
paradigm.
Spring: Spring framework is an open source
application framework that solves many problems of
J2EE. It is based on Java Bean configuration
management with Inversion of Control principle
(IoC). Its unique data access system with a simple
JDBC framework improves its productivity with less
error. Its Aspect Oriented Programming (AOP)
program written in standard Java provides better
transaction management services and also enables it
for different applications. The main aim of Spring is
to simplify the J2EE development and testing.
Spring’s goal is to be an entire application
framework. Spring technology has features like
Transaction Management, JDBC exception Handling,
Integration with Hibernate, JDO, IBATIS, AOP
framework, MVC framework.
Hibernate: It is a Java framework that provides
object or relational mapping mechanism that helps in
determining how Java Objects are stored and
updated. It also offers query service or Java and helps
in developing within the SQL and JDBC
environment, and following some common Java
idioms like inheritance, polymorphism, composition
and collection. This kind of framework set up an easy
way between the Java objects and the relational
database.

Figure 2. Struts, Spring, Hibernate Web
Application

2. Related Work

There are several web applications using J2EE.
J2EE provides standard solutions to each of the three
logical tiers: Presentation Tier, Business Logic Tier

and Enterprise Information System Tier [3]. Many
benefits of J2EE are preserved for Web Services such
as Portability, Scalability, and Reliability. The
integration of Web Services on the e-learning
application domain using J2EE to integrate with Web
service is depicted in [6]. A different elements
regarding the requirements of an e-learning system,
the users and their roles from the point of view the
object oriented analyses and design methodologies
are presented in [2]. J2EE technologies and design
patterns are used to enable easy adding of new
functions in web-based e-learning system [5]. Imed
Hammouda, Kai Koskimies [3] showed how a
general architectural tool called Fred (“Framework
Editor”) can be used to generate an architecture-
centric task-based environment for developing J2EE
applications. Mohammad Jahid Iqbal, Chandan
Kumar Karmakar represented J2EE and its
application framework for enterprise solutions [4].

3. Design Patterns used E-Learning
System

In this session, we present four presentation tier

patterns, three business tier patterns, one data tier
pattern and entity bean and primary key patterns.

Figure 3. J2EE Pattern System

3.1 Intercepting Filter

Context: The presentation-tier request handling
mechanism receives many different types of requests,
which require varied types of processing. Some
requests are simply forwarded to the appropriate
handler component, while other requests must be
modified, audited, or uncompressed before being
further processed.
Problem: Preprocessing and post-processing of a
client Web request and response are required.
Solution: Create pluggable filters to process common
services in a standard manner without requiring
changes to core request processing code. The filters

intercept incoming requests and outgoing responses,
allowing preprocessing and post-processing.
Usage: Login page is used to receive username and
password.

3.2. Front Controller

Context: The presentation-tier request handling
mechanism must control and coordinate processing of
each user across multiple requests. Such control
mechanisms may be managed in either a centralized
or decentralized manner.
Problem: There is no centralized access point for
presentation request handling.
Solution: Use a controller as the initial point of
contact for handling a request. The controller
manages the handling of the request, including
invoking security services such as authentication and
authorization, delegating business processing,
managing the choice of an appropriate view, handling
errors, and managing the selection of content creation
strategies.
Usage: In Struts, the Controller is implemented by
the ActionServlet class. The ActionServlet is
declared in web.xml as follows:
<servlet>
 <servlet-name>action</servlet-name>
 <servlet-calss>

org.apache.struts.action.ActionServlet
 </servlet-class>
 </servlet>
All request URIs with the pattern *.do are mapped to
this servlet in the deployment descriptor as follows:
<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</serlvet-mapping>

3.3. Dispatcher View

Context: System controls flow of execution and
access to presentation processing, which is
responsible for generating dynamic content.
Problem: A view to handle a request and generate a
response, while managing limited amounts of
business processing.
Solution: Use Dispatcher View with views as the
initial access point for a request. Business processing,
if necessary in limited form, is managed by the views.
Usage: The behavior of the dispatcher, and the
behavior of the request handlers that the dispatcher
interacts with, is controlled via a configuration file
struts-config.xml. For example, if username and
password are correct, dispatch to appropriate
welcome page. Otherwise, still in login page.
<form-beans>
 <form-bean name=”userForm” type=
 “com.elearning.presentation.form.UserForm” />
</form-beans>

<action-mappings>
 <action path=”/login” validate=”true”
 type=”org.springframework.web.struts.
 DelegatingActionProxy” name=”userForm”
 scope=”session” input=”/home.jsp”>
 <forward name=”loginNoSuccess”
 path=”/home.jsp />
 <forward name=”loginLearnerSuccess”
 path=”/WEB-INF/jsp/welcome.jsp” />
 <forward name=”loginCoorSuccess”
 path=”/WEB-INF/jsp/welcomeCoor.jsp” />
 <forward name=”loginAdminSuccess”
 path=”WEB-INF/jsp/welcomeAdmin.jsp” />
 </action>
</action-mappings>

3.4. View Helper

Context: The system creates presentation content,
which requires processing of dynamic business data.
Problem: To separate a view from its processing
logic.
Solution: A view contains formatting code,
delegating its processing responsibilities to its helper
classes, implemented as JavaBeans or custom tags.
Helpers also store the view’s intermediate data model
and serve as business data adapters.
Usage: For instance, the following code is used to
show test result.
<logic:notEmpty: name=”marks”>
 Your score: ${marks} marks.
</logic:notEmpty>

3.5. Business Delegate

Context: A multi-tiered, distributed system requires
remote method invocations to send and receive data
across tiers. Clients are exposed to the complexity of
dealing with distributed components.
Problem: To hide clients from the complexity of
remote communication with business service
components.
Solution: Use a Business Delegate to encapsulate
access to a business service. The Business Delegate
hides the implementation details of the business
service, such as lookup and access mechanisms.
Usage: Action class calls methods in service class
that abstracts and hides the implementation details of
the business services.

3.6. Session Façade

Context: Enterprise beans encapsulate business logic
and business data and expose their interfaces, and
thus the complexity of the distributed services, to the
client tier.
Problem: To expose business components and
services to remote clients.

Solution: Use a Session Façade to encapsulate
business-tier components and expose a coarse-
grained service to remote clients. Clients access a
Session Façade instead of accessing business
components directly.
Usage: HttpSession is used such as
 request.getSession().setAttribute(“userform”,
 myform);

3.7. Data Transfer Object (Value Object)

Context: Application clients need to exchange data
with enterprise beans.
Problem: To transfer multiple data elements over a
tier.
Solution: Use a Transfer Object to carry multiple
data elements across a tier.
Usage: For example, user data transfer object (DTO)
is used as a data carrier to save or update user
information.

3.8. Data Access Object

Context: Access to data varies depending on the
source of the data. Access to persistent storage, such
as to a database, varies greatly depending on the type
of storage (relational databases, object-oriented
databases, flat files, and so forth) and the vendor
implementation.
Problem: To encapsulate data access and
manipulation in a separate layer.
Solution: Use a Data Access Object to abstract and
encapsulate all access to the persistent store. The
Data Access Object manages the connection with the
data source to obtain and store data.
Usage: For instance, CourseDao interface and
CourseDaoImpl class are used as data access
mechanisms to access and manipulate data in course
table.

3.9. Entity Bean

An entity bean represents a business object in a
persistent storage mechanism. Entity beans are
persistent, allow shared access, have primary keys,
and may participate in relationships with other entity
beans. Entity beans are user, course, coursecontent,
and question.

3.10. Primary Key

Each entity bean has a unique object identifier.
The unique identifier, or primary key, enables the
client to locate a particular entity bean. For example,
primary key pattern is used as getByCourseId
(course_id) to get course in course content
registration.

4. System Design and Implementation

Figure 4. The Flowchart of System

In this system, there are three types of user level:
Administrator, Coordinator and Learner. All users
need to login with username and password. New user
need to register for learner account. Coordinator and
administrator accounts are registered by
administrator. All users can update their own profiles.
According to the login user types, their roles are
different. Learner can recognize understanding of
information technology (IT) by taking examination.
Learner can also view course catalog, select and
download course content to gain and improve
knowledge. Coordinator can create course and course
content about IT and also make question and answer
sets for exam. Administrator can manage users and
system settings. After using of the system, all users
need to log out.

Intercepting Filters are used to pre-process and
post-process of user requests such as logging and
authentication. Front Controller manages the
handling of the request, including invoking security
services such as authentication and authorization,
delegating business processing, managing the choice
of an appropriate view. A controller coordinates with
a dispatcher component. A dispatcher is responsible
for view management and navigation. The user is
dispatched to the next view using dispatcher
components. View helpers are used to present
business data in separate view components. Every
generated entity bean has one primary key. If the
entity bean has bean-managed persistence then a Data
Access Object is used in order to encapsulate JDBC
code. Instead of invoking multiple getters and setters
for every field, a single method call is used to send
and retrieve the Transfer Object/Value Objects. A

number of Session Facades are used to encapsulate
entity beans. Session Facade provide a simpler
interface that reduces the number of business objects
exposed to the client over the network and
encapsulates the complexity of this interaction.
Business Delegate hides the complexities of the
services and acts as a simpler uniform interface to the
business methods.

5. Conclusion

E-learning system describes the improvement of

technology and high standard of technical education
for learners. This system is intended to be able to use
web-based learning and teaching system. In web-
based e-learning system, learners can study lessons in
24 hours as they like, coordinators can participate in
teaching and administrator can manage this system.
By using J2EE technologies and design patterns, this
system will be very easy for additional functionality
to be added later.

6. References

[1] D. Alur, J. Crupi, and D. Malks, Core J2EE Patterns:
Best Practices and Design Strategies, Second Edition,
Prentice Hall PTR, June 10, 2003.

[2] I.A. Uta, “Developing E-learning System”.

[3] I. Hammouda, K. Koskimies, “A Pattern-Based J2EE
Application Development Environment”.

[4] M.J. Iqbal, C.K. Karmakar, “J2EE and Its Application
Framework for Enterprise Solutions”.

[5] M. Zdravkovic, M. Tranjanovic, and M. Ioannidis,
“Functional Requirements Analysis and Design of J2EE
Compliant Virtual Classroom Web Application”.

[6] X. Liu, A.E. Saddik, and N.D. Georganas, “An
Implementable Architecture of an E-learning System”.

